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Abstract
In this paper, we study the asymptotic distributions of the heterogeneous random
coagulation-fragmentation processes (HCFP) which model the coagulation,
fragmentation and diffusion of clusters of particles on a lattice. Based on
a closed form of the stationary distribution for the HCFP, we prove that the
mutually dependent clusters with a finite size (finite particles) in the sub-critical
stage will become independent in the critical and super-critical stages, and the
asymptotic distributions of the number of clusters may converge to Gaussian
or Poisson distribution according to its size, to be small or large in the critical
and super-critical stages.

PACS numbers: 82.35.Jk, 02.50.Ga
Mathematics Subject Classification: 60K35

1. Introduction

Since Smoluckowski (1916) proposed the coagulation equations which describe the coupled
evolution of the densities cj (t) of polymers (clusters) made up of j units (particles) (j =
1, 2, 3, . . .) in an infinite-volume homogeneous system, various aspects of the equations and
their stochastic counterparts containing the combined effects of coagulation and fragmentation
have been extensively studied by many authors (see [2, 3, 6–9, 13–16, 21, 22] and [17]).
A detailed overview of the models in the mathematical aspects can be found in [1] or
[5]. Recently, a necessary and sufficient condition for the occurrence of a gelation of the
reversible random coagulation-fragmentation processes has been studied in [11]. However,
the above models have no diffusion of the clusters. If we add the diffusion in the coagulation-
fragmentation model such that it has an effective action on the coagulation and fragmentation
(i.e. heterogeneous random coagulation-fragmentation processes (HCFP)), can one obtain
similar results as the homogeneous coagulation-fragmentation models? Especially, what is
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the asymptotic behavior of the HCFP? In this paper, we first give a closed form of the stationary
distribution for the HCFP, then show that the asymptotical distributions of the number of the
clusters may converge to Gaussian or Poisson distribution according to its sizes to be small or
large as the total number of particles goes to infinity. Though the process considered in this
paper is different from that studied by Pittel et al [18, 19], their work provides some good
ideas and techniques for us.

Section 2 contains a description of the HCFP. The closed form of the stationary distribution
is given in section 3. Our main results about the asymptotical distributions of the number of
the clusters are shown in section 4.

2. The heterogeneous coagulation-fragmentation processes

In this section, some notations and preliminaries are given. Consider the following interacting
particles system: in each site x ∈ Z

d of d-dimensional integer lattice, particles can coagulate
to form a cluster, and two clusters can coagulate to form a larger one, and a larger cluster can
fragmentate into two smaller ones, and all of them can also move to their neighbor sites y.

Let B be a finite subset of Z
d , N = {0, 1, 2, . . .}, N+ = {1, 2, . . .} and X(B) = {A :

A ∈ N
B×N+}, where A = (a(x, k) : a(x, k) ∈ N, x ∈ B, k ∈ N+). Here we assume that the

number, |B|, of set B is at least greater than 2. Thus, A can be regarded as a matrix with
indices in B × N+. For each x ∈ B, denote by a(x, k) the number of k-clusters in site x. Let
Ix,i = (a(y, j) : y ∈ B, j ∈ N+) ∈ X(B) be a matrix such that a(y, j) = 0 for (y, j) �= (x, i)

and a(y, j) = 1 for (y, j) = (x, i). For A ∈ X(B), let

Ak
x,y := A + Iy,k − Ix,k, if a(x, k) > 0 and ‖x − y‖ = 1;

A+
x,ij := A + Ix,i+j − Ix,i − Ix,j , if a(x, i) > 0 and a(x, j) > 0;

A−
x,ij := A − Ix,i+j + Ix,i + Ix,j , if a(x, i + j) > 0;

Ax := (a(x, 1), a(x, 2), . . .);
|Ax | = ∑

k ka(x, k) and |A| = ∑
x∈B |Ax |. Here, Ak

x,y means that the state of the process
obtained from a state A after a jump of a cluster of size k from site x to site y and A+

x,ij denotes
that the state obtained from a state A after a cluster of size i coagulate with a cluster of size j

to form a cluster of size i + j in the site x, i.e.

(i) + (j) → (i + j).

A−
x,ij means that the state obtained from a state A after a cluster of size i + j breaks into a

cluster of size i and a cluster of size j in site x, i.e.

(i + j) → (i) + (j)

and Ax denotes the distribution of the numbers of the different clusters in site x.
Let N denote the total number of particles in the system; then N = ∑

x∈B |Ax |.
Let XN(B) = {A : A ∈ X(B), |A| = N}. Now we define the heterogeneous random
coagulation-fragmentation process considered in the paper as follows: the process, denoted
by {AN(t), t � 0}, is a continuous-time irreducible Markov chain on the finite state space
XN(B) with state transition rates

QAA′ :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2d g(a(x, k))/N, if A′ = Ak

x,y,

Kijg(a(x, i))g(a(x, j) − δij )/N
2, if A′ = A+

x,ij ,

Fij g(a(x, i + j))/N, if A′ = A−
x,ij ,

0, if A′ �= Ak
x,y, A

+
x,ij , A

−
x,ij
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and

QAA = −
∑

A′∈XN (B),A′ �=A

QAA′,

where A,A′ ∈ XN(B), g(.) denotes the diffusion rate which is a positive function except
g(0) = 0,Kij and Fij are coagulation and fragmentation kernels respectively, and δij = 1 for
i = j and 0 for i �= j. Here the choice of rates of coagulation, fragmentation and diffusion
reflect the case like in a polymer system that reaction occurs with a probability proportional
to both the numbers of reactants and inversely proportional to the volume; here the density is
taken to be equal to 1, so that the volume coincides with the total number of units N. Though
there are many ways of action of the diffusion on coagulation and fragmentation, the main
reason for us to take the special forms, g(a(x, i))g(a(x, j) − δij ) and g(a(x, i + j)), is that
we can easily obtain the stationary distribution of the process by the forms. Note that the
coagulation and fragmentation do not depend directly on the diffusion rate when g(k) = k.

Remark 1. The coagulation rate will become ia(x,i)

N

ja(x,j)

N
for i �= j when g(k) = k and

Kij = ij for i �= j and Kij = i2/2 for i = j . In the case of i �= j, ia(x,i)

N

ja(x,j)

N
denotes

the probability of forming i + j -cluster from any two i-cluster and j -cluster. For i = j,
1
2

ia(x,i)

N

i(a(x,i)−1)

N
denotes the probability of forming a 2i-cluster from any two i-clusters among

all i-clusters (a(x, i)) in site x. Note that a(x, i)(a(x, i) − 1)/2 is the number of ways of
forming a 2i-cluster from any two i-clusters among all i-clusters (a(x, i)) in site x.

3. The stationary distribution

The stationary distributions for the homogeneous random coagulation-fragmentation processes
have been given by Han [10] and Durrett et al [7]. Here we shall present the stationary
distribution for the HCFP. Assume the following
H1: the diffusion rate g(.) satisfies

sup
m

|g(m + 1) − g(m)| < ∞.

H2:

Kij = Kji, Fij = Fji, Kijh(i)h(j) = λFijh(i + j), i, j � 0,
(1)

where 1
λ
(λ > 0) represents the fragmentation strength and h(.) is a positive function. As

Van Dongen and Ernst [21] stated, when the process describes the system of polymers in
which intramolecular reactions do not occur, and therefore only branched-chain (non-cyclic)
polymers are formed and all unreacted functional groups are equally reactive, k!h(k) may
denote the number of distinct ways of forming k-mers from k distinguishable units and
equation (1) states that the number of distinct ways for (i + j)-mers to break up into i-mer
and j -mers (λF (i, j)h(i + j)) equals the number of bonds between (i) and (j) polymers in
(i + j)-mer configurations (K(i, j)h(i)h(j)). In fact, the total fragmentation rate of a k-mer
is taken to be proportional to the number of bonds in [21], i.e.

1

2

∑
i+j=k

Fij = 1

λ
(k − 1).

In particular all bonds are equally breakable, and the total rate of k-mer break up, 1
2

∑
Fij , is

proportional to the number of bonds. Hence, by equation (1) we have

(k − 1)h(k) = 1

2

∑
i+j=k

Kijh(i)h(j).



14652 C Hu et al

The quantities wk defined by wk = k!h(k) represent the number of distinct ways in which a
k-mer can be constructed out of k monomeric units, assuming that units and functional groups
are distinguishable. This can be seen as follows. By the definition of wk , we have

(k − 1)wk = 1

2

∑
i+j=k

k!

i!j !
Kijwiwj .

According to the right-hand side of the above equation, one may choose i units out of k
(distinguishable) units in Ci

k different ways in order to build i- and j -mers (which may be
constructed in wiwj different ways). Since functional groups are also distinguishable, such
i- and j -mers may be joined in Kij ways. Equation (1) is usually called a detailed balance
condition.

Note that the condition H1 is not necessary for obtaining the stationary distribution in the
following, but it can guarantee that the limit process (N → ∞ and B ↗ Z

d ) of {AN(t), t � 0}
is a unique Feller process (see [12]).

Theorem 1. Suppose the two conditions H1 and H2 hold. Then {AN(t), t � 0} has a unique
stationary distribution µN given by

µN(A) = 1

ZN

∏
x∈B

N∏
k=1

[
N
λ
h(k)

]a(x,k)

g(a(x, k))!
, A ∈ XN(B), (2)

and the process is reversible with this stationary distribution, where ZN is the normalization
factor, i.e.

ZN =
∑

A∈XN (B)

∏
x∈B

N∏
k=1

[
N
λ
h(k)

]a(x,k)

g(a(x, k))!
, (3)

where g(m)! = g(1)g(2) · · · g(m) with g(0)! := 1. Usually, ZN is called the partition
function of the process.

Proof. We first check that

µN(A′)QA′A = µN(A)QAA′ (4)

for all A,A′ ∈ XN(B). It is equivalent to check

Q(A,A′)
Q(A′, A)

= µ(A′)
µ(A)

for all A,A′ ∈ XN(B). In fact, we have

Q(A,A′)
Q(A′, A)

= g(a(x, k))

g(a(y, k) + 1)
= g(a(x, k))

N
λ
h(k)

N
λ
h(k)

g(a(y, k) + 1)
= µ(A′)

µ(A)

for the case A′ = Ak
x,y and, by (1),

Q(A,A′)
Q(A′, A)

= Kij

NFij

g(a(x, i))g(a(x, j))

g(a(x, i + j) + 1)

= λh(i + j)

Nh(i)h(j)

g(a(x, i))g(a(x, j))

g(a(x, i + j) + 1)

=
N
λ
h(i + j)

g(a(x, i + j) + 1)

g(a(x, i))
N
λ
h(i)

g(a(x, j))
N
λ
h(j)

= µ(A′)
µ(A)
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for A′ = A+
x,ij , i �= j . Similarly, we can check that (4) holds for A′ = A+

x,ij , i = j , and
A′ = A−

x,ij . Thus, (4) holds for all A,A′ ∈ XN(B), and therefore∑
A′∈XN (B)

µN(A′)QA′A = µN(A)
∑

A′∈XN (B)

QAA′ = 0.

This means that µN is a reversible stationary distribution of the process. Since all states in
XN(B) connect mutually, that is, for A,A′ ∈ XN(B), there are A1, A2, . . . , Ak ∈ XN(B)

(k � 1) such that Q(A,A1)Q(A1, A2) . . . Q(Ak,A
′) > 0. This means that the process is an

irreducible Markov chain on the finite state space, so the stationary distribution is unique. �

4. Asymptotic distributions of the clusters

In this section, we shall study the asymptotic behavior of the process. The convergence
considered here is to converge in distribution. We use EN(.) and E(.) to denote, respectively,
the expectation corresponding to the stationary probability distribution µN and the limit of
EN(.), i.e. E(.) = limN→∞ EN(.). The methods and techniques used in the proofs of theorems
come mainly from [10, 11, 18, 19].

Now we assume that the diffusion rate g(.) satisfies

g(k) = γ k, (5)

where γ > 0 denotes the diffusion strength. It follows from (2) and (5) that

µN(A) = 1

ZN

∏
x∈B

N∏
k=1

[
N
λγ

h(k)
]a(x,k)

a(x, k)!
, A ∈ XN(B). (6)

Let the following series F(u) has a positive radius, r, of convergence and

F(u) =
∞∑

k=1

h(k)uk < ∞ (7)

for |u| � r . Let

Z(N, y) =
∑

A∈XN (B)

∏
x∈B

N∏
k=1

[yh(k)]a(x,k)

a(x, k)!

for y > 0. Next, an integral expression of the partition function ZN will be given in lemma 1.
We shall use a(x, j) to denote a value of random variable a(x, j) in the following.

Lemma 1. Suppose the three conditions (1), (5) and (7) hold. Then

ZN = Z

(
N,

N

λγ

)
= 1

2π i

∫
�

exp

{ |B|N
λγ

F(u)

}
du

uN+1
, (8)

EN [a(x, k)] = N

λγ
h(k)

Z
(
N − k, N

λγ

)
Z
(
N, N

λγ

) , x ∈ B, (9)

and

EN [a(x, k)2] =
[

N

λγ
h(k)

]2 Z
(
N − 2k, N

λγ

)
Z
(
N, N

λγ

) +
N

λγ
h(k)

Z
(
N − k, N

λγ

)
Z
(
N, N

λγ

) , x ∈ B, (10)

where � is a contour with its radius equal to r surrounding the origin u = 0.
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Proof. Let B = {x1, . . . , xm} and A = (a(xj , k), 1 � j � m, 1 � k � N) ∈ XN(B),
where

∑m
j=1

∑N
k=1 ka(xj , k) = N . Assume that a(x ′

j , k
′) � 1 for some x ′

j and k′. Let A′ =
(a′(xj , k), 1 � j � m, 1 � k � N), where a′(xj , k) are defined by a′(xj , k) = a(x ′

j , k
′) − 1

for xj = x ′
j and k = k′; otherwise a′(xj , k) = a(xj , k). Thus, A′ = (a′(xj , k), 1 � j � m,

1 � k � N) ∈ XN−k′(B) since
∑m

j=1

∑N
k=1 ka′(xj , k) = N − k′ = ∑m

j=1

∑N−k′
k=1 ka′(xj , k).

We shall use this fact in the following computation. Since

Z(N, y) =
∑

A∈XN (B)

m∏
j=1

N∏
k=1

[yh(k)]a(xj ,k)

a(xj , k)!
=

∑
A∈XN (B)

y
∑m

j=1

∑N
k=1 a(xj ,k)

m∏
j=1

N∏
k=1

h(k)a(xj ,k)

a(xj , k)!
,

it follows that

Z′
y(N, y) =

∑
A∈XN (B)

m∑
j=1

N∑
k=1

a(xj , k)y
∑m

j=1

∑N
k=1 a(xj ,k)−1

m∏
j=1

N∏
k=1

h(k)a(xj ,k)

a(xj , k)!

=
∑

A∈XN (B)

⎧⎨
⎩

m∑
j=1

N∑
k=1

a(xj , k)ya(xj ,k)−1 h(k)a(xj ,k)

a(xj , k)!

×
∏
l �=k

[yh(l)]a(xj ,l)

a(xj , l)!

∏
i �=j

N∏
l=1

[yh(l)]a(xi ,l)

a(xi, l)!

⎫⎬
⎭

=
∑

A∈XN (B)

⎧⎨
⎩

m∑
j=1

N∑
k=1

h(k)ya(xj ,k)−1 h(k)a(xj ,k)−1

(a(xj , k) − 1)!

×
∏
l �=k

[yh(l)]a(xj ,l)

a(xj , l)!

∏
i �=j

N∏
l=1

[yh(l)]a(xi ,l)

a(xi, l)!

⎫⎬
⎭

=
N∑

k=1

h(k)
∑

A∈XN−k(B)

⎧⎨
⎩

m∑
j=1

N∏
l=1

[yh(l)]a
′(xj ,l)

a′(xj , l)!

∏
i �=j

N∏
l=1

[yh(l)]a(xi ,l)

a(xi, l)!

⎫⎬
⎭

=
N∑

k=1

h(k)
∑

A∈XN−k(B)

⎧⎨
⎩

m∑
j=1

N−k∏
l=1

[yh(l)]a(xj ,l)

a(xj , l)!

∏
i �=j

N−k∏
l=1

[yh(l)]a(xi ,l)

a(xi, l)!

⎫⎬
⎭

= m

N∑
k=1

h(k)
∑

A∈XN−k(B)

m∏
i=1

N−k∏
l=1

[yh(l)]a(xi ,l)

a(xi, l)!

= |B|
N∑

k=1

h(k)Z(N − k, y),

where we define
∑

A:|A|=0

∏0
k=1 = 1. We now prove that the differentiation w.r.t. the variable

y can be done in the infinite sum I (u, y) for u � r . �

We only consider the case: B = {x} and |Ax | = N . We can similarly discuss this for
|B| > 0. Since

F(u) =
∞∑

k=1

h(k)uk =
∞∑

k=1

[(h(k))
1
k u]k < ∞ (11)

for |u| � r , it follows that [(h(k))1/kr]k → 0 as k → ∞. Hence, there exists a positive
number k0 such that (h(k))1/kr < 1 for k � k0. Note that, for any fixed ȳ (0 < ȳ < ∞),
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(ȳ)1/k → 1 as k → ∞. We can take a positive number k0 such that (ȳh(k))1/kr � c < 1
for k � k0. Let nk = a(x, k). Note that

∑N
k=1 knk = N and nk = 0 for k > k0 when

∑k0
k=1

knk � N − k0, where N > k0. Thus, there are two positive numbers a0 > 1 and b0 > 1 which
depend only on k0 such that

Z(N, y)uN =
∑

A∈XN ({x})

N∏
k=1

[yh(k)]a(x,k)

a(x, k)!
uN

=
∑

(n1,...,nN ):
∑N

k=1 knk=N

k0∏
k=1

[yh(k)uk]nk

nk!

N∏
k=k0+1

[(yh(k))1/ku]knk

nk!

�
∑

(n1,...,nN ):
∑N

k=1 knk=N

k0∏
k=1

[ȳh(k)uk]nk

nk!

cN−∑k0
k=1 knk

nk0+1! · · · nN !

�
∑

(n1,...,nN ):
∑k0

k=1 knk�N−k0

k0∏
k=1

[(ȳh(k))1/kr]knk

nk!

+
∑

(n1,...,nN ):
∑k0

k=1 knk<N−k0

k0∏
k=1

[(ȳh(k))1/kr]knk

nk!

cN−∑k0
k=1 knk

nk0+1! · · · nN !

�
∑

(n1,...,nN ):
∑k0

k=1 knk�N−k0

k0∏
k=1

k!(nk)
k[(ȳh(k))1/kr]knk

(knk)!

+
∑

(n1,...,nN ):
∑k0

k=1 knk<N−k0

k0∏
k=1

k!(nk)
k[(ȳh(k))1/kr]knk

(knk)!

cN−∑k0
k=1 knk

nk0+1! · · · nN !

� (k0!)k0
∑

(n1,...,nN ):
∑k0

k=1 knk�N−k0

k0∏
k=1

[
(nk + 1)

1
nk+1 (ȳh(k))1/kr

]knk

(knk)!

+ (k0!)k0
∑

(n1,...,nN ):
∑k0

k=1 knk<N−k0

k0∏
k=1

[
(nk + 1)

1
nk+1 (ȳh(k))1/kr

]knk

(knk)!

cN−∑k0
k=1 knk

nk0+1! · · · nN !

� (k0!)k0
∑

(n1,...,nN ):
∑k0

k=1 knk�N−k0

k0∏
k=1

[2(ȳh(k))1/kr]knk

(knk)!

+ (k0!)k0
∑

(n1,...,nN ):
∑k0

k=1 knk<N−k0

k0∏
k=1

[2(ȳh(k))1/kr]knk

(knk)!

cN−∑k0
k=1 knk

nk0+1! · · · nN !

� a0(k0!)k0

[
2r
∑k0

k=1(ȳh(k))1/k
]N−k0

(N − k0)!

+ b0(k0!)k0N

N−k0−1∑
m=1

[
2r
∑k0

k=1(ȳh(k))1/k
]m

m!
cN−m

� a0(k0!)k0

[
2r
∑k0

k=1(ȳh(k))1/k
]N−k0

(N − k0)!
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+ b0(k0!)k0N

{
N−k0−1∑

m=1

[
2r/c

∑k0
k=1(ȳh(k))1/k

]m
m!

}
cN

� a0(k0!)k0
[A(r, ȳ, k0)]N−k0

(N − k0)!
+ b0(k0!)k0N exp{A(r, ȳ, k0)/c}cN

for N > k0, 0 � y � ȳ and 0 � u � r , where A(r, ȳ, k0) = 2r
∑k0

k=1(ȳh(k))1/k . Hence,

I ′
y(u, y) =

∞∑
N=1

Z′
y(N, y)uN =

∞∑
N=1

N∑
j=1

h(j)Z(N − j, y)uN

=
∞∑

j=1

h(j)uj

∞∑
N−j=1

Z(N − j, y)u(N−j)

� F(u)

⎡
⎣ k0∑

n=1

Z(n, y)un +
∞∑

n=k0+1

[
a0(k0!)k0

[A(r, ȳ, k0)]n−k0

(n − k0)!

+ b0(k0!)k0n exp{A(r, ȳ, k0)/c}cn

]⎤⎦ < ∞.

for 0 � y � ȳ and 0 � u � r . This means that the differentiation w.r.t. the variable y can be
done in the infinite sum for u � r .

Hence

I ′
y(u, y) =

∞∑
N=1

Z′
y(N, y)uN = |B|

∞∑
N=1

N∑
j=1

h(j)Z(N − j, y)uN

= |B|
∞∑

j=1

h(j)uj

∞∑
N−j=1

Z(N − j, y)u(N−j) = |B|F(u)I (u, y),

and therefore

I (u, y) = exp{y|B|F(u)}. (12)

By using the Cauchy integral formula for (11) and taking y = N/(λγ ), we can obtain (8).
It follows from (6) that

EN [a(x, k)] = 1

ZN

∑
A∈XN (B)

a(x, k)

[
N
λγ

h(k)
]a(x,k)

a(x, k)!

N∏
j �=k

[
N
λγ

h(j)
]a(x,j)

a(x, j)!

∏
z �=x

N∏
k=1

[
N
λγ

h(k)
]a(z,k)

a(z, k)!

= N

λγ
h(k)

1

ZN

∑
A∈XN−k(B)

N−k∏
j=1

[
N
λγ

h(j)
]a(x,j)

a(x, j)!

∏
z �=x

N∏
k=1

[
N
λγ

h(k)
]a(z,k)

a(z, k)!

= N

λγ
h(k)

Z
(
N − k, N

λγ

)
Z
(
N, N

λγ

) .

This is (9). The equality (10) can be similarly obtained.
As we know that if N → ∞, then at least one of |Ax |, x ∈ B goes to ∞ since

N = ∑
x∈B |Ax | and B is a finite set. For fixed |B|, let ρ = λγ/|B|. Obviously, the

fragmentation and diffusion strengths, λ and γ , can form different hyperbola for different
values of ρ. Next, we give a definition of a gelation in the HCFP in order to study the critical
behavior of the process.
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Figure 1. A critical curve.

Definition 1. We say that there is a gelation in the HCFP, if there is a critical curve ρc such
that

lim
N→∞

1

N
EN

[∑
x∈B

N∑
k=1

ka(x, k)

]
= 1

for ρ � ρc and

lim
N→∞

1

N
EN

[∑
x∈B

N∑
k=1

ka(x, k)

]
< 1

for ρ > ρc.

By theorem 2 of [11], we know that if

h(k) = (1 + o(1))cr̃−kk−β, (13)

where c, r̃ and β are three positive constants, then there is a gelation in the homogeneous
coagulation-fragmentation process when 2 < β < 3. It can be checked that the numbers
h(k), k � 1, for many models, such as RAa (a � 3), RA∞, AaRBb (min(a, b) � 2),
AaRB∞ (a � 2), etc. satisfy (12) (see [11, 21]).

So, we shall assume that h(k) satisfies (12) and 2 < β < 3 in the following. Thus, (7)
holds for |u| � r̃ and

F ′(r̃) = lim
u→r̃−0

F ′(u) < +∞; F ′′(r̃) = lim
u→r̃−0

F ′′(u) = +∞.

By using (6), (8), (9), (12) and theorem 2 of [11], we know that a critical curve ρc for the
occurrence of gelation in the HCFP can be determined by

ρc = r̃F ′(r̃).

We usually call ρ < ρc, ρ = ρc and ρ > ρc as the sub-critical, critical and super-critical
stages, respectively (see figure 1).

Let ρ < ρc and DN(u) = N
ρ
F (u) − N log u for 0 < u � r̃ . Let r be a root of equation

D′
N(u) = 0. Then r satisfies ρ = rF ′(r) and r < r̃ for all N. Note that F ′(u) is a strictly

monotone increasing function on [0, r̃], and therefore r is a saddle point of exp{DN(u)}. By
the standard saddle-point-type argument (see [20], p 96) and (8), we can get

ZN = Z

(
N,

N

λγ

)
= (1 + o(1))

1√
2πA(r)N

exp{DN(r)}, (14)
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where

A(r) = rF ′(r) + r2F ′′(r)
ρ

. (15)

Note that ∫ +∞

−∞
exp{ibx − a2x2} dx =

√
π

a
exp

{
− b2

4a2

}
,

where a > 0 and i = √−1. We can similarly obtain

Z

(
N − k,

N

λγ

)
= (1 + o(1))

rk

√
2πA(r)N

exp

{
− k2

4A(r)N

}
exp{DN(r)}.

Hence,

Z

(
N − k,

N

λγ

)/
Z

(
N,

N

λγ

)
= (1 + o(1))rk exp

{
− k2

4A(r)N

}
. (16)

It follows from (9), (10) and (15) that the expectation and variance of a(x, k) satisfy

EN [a(x, k)] = V arN [a(x, k)] = (1 + o(1))
N

ρ|B|h(k)rk (17)

for large N.
Let a∗(x, j)(r) = [a(x, j) − Naj (r)]/

√
Naj (r)), where aj (r) = h(j)rj /(ρ|B|), 0 <

r � r̃ . In fact, Naj (r) and
√

Naj (r) are the expectation and standard variance of a(x, j)
respectively.

Theorem 2. Suppose the three conditions (1), (5) and (12) hold.

(i) If ρ < ρc and r satisfies ρ = rF ′(r), then {a∗(x, j)(r), x ∈ B, j � 1} converges to a
mutually dependent Gaussian sequence {Gj(x), x ∈ B, j � 1} as N → ∞ with

E[Gj(x)] = 0, E[Gj(x)Gl(y)] = δjl(xy) − gjgl

and

gj = j
√

h(j)rj

√|B|
√

rF ′(r) + r2F ′′(r)
,

where δjl(xy) = 0 for j �= l or x �= y and δjl(xy) = 1 for j = l and x = y.
(ii) If ρ � ρc, then {a∗(x, j)(r̃), x ∈ B, j � 1} converges to a mutually independent Gaussian

sequence {Gj(x), x ∈ B, j � 1} as N → ∞ with

E[Gj ] = 0, E[Gj(x)Gl(y)] = δjl(xy).

Proof. Let B = {x1, . . . , xm}, Tk = {(t1(x), . . . , tk(x), 0, . . .) : x ∈ B} and T (x) =
(t1(x), . . . , tn(x), . . .) for x ∈ B, where tj (x), x ∈ B, are all real numbers. Denote by
�N(Tk) (k � N) the characteristic function of random variables a(x, j), 1 � j � k, x ∈ B.
Then

�N(TN) = EN

⎡
⎣∏

x∈B

N∏
j=1

eitj (xl )a(x,j)

⎤
⎦

=
∑

A∈XN (B)

m∏
l=1

N∏
j=1

eitj (xl )a(xl ,j)µN(A)

= 1

ZN

∑
A∈XN (B)

m∏
l=1

N∏
j=1

[
N
λγ

eitj (xl )h(j)
]a(xl ,j)

a(xl, j)!
, (18)
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and therefore

ZN(y)�N(TN) =
∑

A∈XN (B)

m∏
l=1

N∏
j=1

[y eitj (xl )h(j)]a(xl ,j)

a(xl, j)!
,

where i = √−1 and y > 0. Let g(y,N) = ZN(y)�N(TN) and G(y, u) = 1 +
∑∞

N=1
g(y,N)uN , we have

∂g(y,N)

∂y
=

∑
A∈XN (B)

{
m∑

l=1

N∑
k=1

a(xl, k)ya(xl ,k)−1 [eitk (xl )h(k)]a(xl ,k)

(a(xl, k)!

N∏
j �=k

[y eitj (xl )h(j)]a(xl ,j)

a(xl, j)!

×
∏
i �=l

N∏
j=1

[y eitj (xi )h(j)]a(xi ,j)

a(xi, j)!

}

=
∑

A∈XN (B)

{
m∑

l=1

N∑
k=1

eitk (xl )h(k)
[y eitk (xl )h(k)]a(xl ,k)−1

(a(xl, k) − 1)!

N∏
j �=k

[y eitj (xl )h(j)]a(xl ,j)

a(xl, j)!

×
∏
i �=l

N∏
j=1

[y eitj (xi )h(j)]a(xi ,j)

a(xi, j)!

}

=
N∑

k=1

∑
A∈XN−k(B)

{
m∑

l=1

eitk(xl )h(k)
[y eitk (xl )h(k)]a(xl ,k)−1

(a(xl, k) − 1)!

N−k∏
j=1

[y eitj (xl )h(j)]a(xl ,j)

a(xl, j)!

×
∏
i �=l

N−k∏
j=1

[y eitj (xi )h(j)]a(xi ,j)

a(xi, j)!

}

=
N∑

k=1

∑
A∈XN−k(B)

{
m∑

l=1

eitk(xl )h(k)

N−k∏
j=1

[y eitj (xl )h(j)]a(xl ,j)

a(xl, j)!

×
∏
i �=l

N−k∏
j=1

[y eitj (xi )h(j)]a(xi ,j)

a(xi, j)!

}

=
N∑

k=1

∑
A∈XN−k(B)

{
m∑

l=1

eitk(xl )h(k)

m∏
i=1

N−k∏
j=1

[y eitj (xi )h(j)]a(xi ,j)

a(xi, j)!

}

=
N∑

k=1

m∑
l=1

eitk (xl )h(k)ZN−k(y)�N(TN−k)

=
m∑

l=1

N∑
k=1

eitk (xl )h(k)g(y,N − k).

Thus,

∂G(y,N)

∂y
=

∞∑
N=1

∂g(y,N)

∂y
uN

=
∞∑

N=1

m∑
l=1

N∑
k=1

eitk (xl )h(k)ukg(y,N − k)uN−k

=
m∑

l=1

F(T (xl), u)G(y, u),
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where F(T (xl), u) =∑∞
k=1 eitk (xl )h(k)uk . Hence G(y, u) = ey

∑
x∈B F (T (x),u) and, by Cauchy’s

integral formula,

ZN(y)�N(TN) = 1

2π i

∫
�

exp

{
y
∑
x∈B

F (T (x), u)

}
du

uN+1
.

Taking y = N/(λγ ), we have

�N(TN) = 1

2π iZN

∫
�

exp

{
N

λγ

∑
x∈B

F (T (x), u)

}
du

uN+1
. (19)

�

To prove (i), let N > k for fixed k and let tl(x) = 0 for all l > k and x ∈ B. Then

F(T (x), u) =
k∑

j=1

[eitj (x) − 1]h(j)uj + F(u), x ∈ B. (20)

Taking u = r eiθ , it follows from (17) and (18) that

�N(Tk) = �N({(t1(x), . . . , tk(x), 0, . . .) : x ∈ B})

= 1

2π iZN

∫
�

exp

⎧⎨
⎩N

ρ
F(u) +

N

ρ|B|
∑
x∈B

k∑
j=1

[eitj (x) − 1]h(j)uj ]

⎫⎬
⎭ u−(N+1) du

= exp{DN(r)}
2πZN

∫ π

−π

exp

{
N

ρ
[F(r eiθ ) − F(r)] − iNθ

+
N

ρ|B|
∑
x∈B

k∑
j=1

[eitj (x) − 1]h(j)rj ei(jθ)

}
dθ.

Since

[F(r eiθ ) − F(r)]/ρ = iθ − 1
2A(r)θ2 + o(θ2)

and

eiu − 1 = iu − 1
2u2 + o(u2),

taking
√

Nθ = s and tj (x) = t ′j (x)/
√

Naj (r), we have

N

ρ
[F(r eiθ ) − F(r)] − iNθ +

N

ρ|B|
∑
x∈B

k∑
j=1

[eitj (x) − 1]h(j)rj ei(jθ)

= 1

2
A(r)s2 − C(r)s + M(r) + o(1)

for large N, where A(r) is defined in (14),

C(r) =
∑
x∈B

k∑
j=1

j
√

aj (r)t
′
j (x)

and

M(r) = i
√

N
∑
x∈B

k∑
j=1

√
aj (r)t

′
j (x) − 1

2

∑
x∈B

k∑
j=1

(t ′j (x))2.
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Hence,

�N

({(
t ′1(x)√
Na1(r)

, . . . ,
t ′k(x)√
Nak(r)

, 0, . . .

)
: x ∈ B

})
= �N({(t1(x), . . . , tk(x), 0, . . .) : x ∈ B})

= exp{DN(r) + M(r)}
2π

√
NZN

∫ π
√

N

−π
√

N

exp

{
−1

2
A(r)s2 − C(r)s + o(1)

}
ds

= exp{DN(r) + M(r)}
2π

√
NZN

∫ π
√

N

−π
√

N

exp

{
−A(r)

2

(
s +

C(r)

A(r)

)2

+
C2(r)

2A(r)
+ o(1)

}
ds

= (1 + o(1))
exp{DN(r)}√

2πA(r)
√

NZN

exp

{
M(r) +

C2(r)

2A(r)

}

= (1 + o(1)) exp

⎧⎨
⎩M(r) +

1

2

∑
x,y∈B

k∑
j=1

k∑
l=1

gjglt
′
j (x)t ′l (y)

⎫⎬
⎭ ,

where the last equality follows from (13). Thus,

EN

⎡
⎣∏

x∈B

k∏
j=1

eit ′j (x)a∗(x,j)(r)

⎤
⎦ = exp

⎧⎨
⎩−i

√
N
∑
x∈B

k∑
j=1

√
aj (r)t

′
j (x)

⎫⎬
⎭

×�N

({(
t ′1(x)√
Na1(r)

, . . . ,
t ′k(x)√
Nak(r)

, 0, . . .

)
: x ∈ B

})

= (1 + o(1)) exp

⎧⎨
⎩−1

2

∑
x∈B

k∑
j=1

(t ′j (x))2 +
1

2

∑
x,y∈B

k∑
j=1

k∑
l=1

gjglt
′
j (x)t ′l (y)

⎫⎬
⎭

= (1 + o(1)) exp

⎧⎨
⎩−1

2

∑
x,y∈B

k∑
j=1

k∑
l=1

[δjl(xy) − gjgl]t
′
j (x)t ′l (y)

⎫⎬
⎭

for large N. This completes the proof of (i).
In order to prove (ii), let α = β − 1, b = 1 − r̃F (r̃)/ρ and

φ = c

(β − 1)(β − 2)(β − 3)
.

By (8) we can prove that (see the proof of theorem 2 of [11])

F(r̃ e(iθ)) − F(r̃) = ir̃F ′(r̃)θ − φ|θ |α exp

{
−i

(α − 2)π

2
sign(θ)

}
+ o(|θ |α)

and

ZN = 1

2π i

∫
�

exp

{
N

ρ
F(u) − N log u

}
u−1du

= exp{DN(r̃)}
2π

∫ π

−π

exp

{
N

ρ
[F(r̃ eiθ ) − F(r̃)] − iNθ

}
dθ

= exp{DN(r̃)}
2π

∫ π

−π

exp

{
−ibNθ − φ

ρ
N |θ |α exp

{
−i

(α − 2)π

2
sign(θ)

}
+ o(N |θ |α)

}
dθ

= exp{DN(r̃)}
2π(φN/ρ)1/α

∫ π(φN/ρ)1/α

−π(φN/ρ)1/α

× exp

{
−ib

N(α−1)/α

(φ/ρ)1/α
t + |t |α exp

{
−i

(α − 2)π

2
sign(t)

}
+ o(|t |)

}
dt (21)
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for ρ � ρc and large N. Note that 1 > 1/α > 1/2, N1/2 = o(N1/α) and

N

|B|ρ
∑
x∈B

k∑
j=1

[eitj (x) − 1]h(j)r̃j ei(jθ) = (1 + o(1))

⎧⎨
⎩i

√
N
∑
x∈B

k∑
j=1

√
aj (r̃)t

′
j (x)

− 1

2

∑
x∈B

k∑
j=1

(t ′j (x))2 + o

⎛
⎝N

1
α θ

⎛
⎝∑

x∈B

k∑
j=1

j t ′j (x)

⎞
⎠
⎞
⎠
⎫⎬
⎭

= (1 + o(1))

⎧⎨
⎩M(r̃) + o

⎛
⎝N

1
α θ

⎛
⎝∑

x∈B

k∑
j=1

j t ′j (x)

⎞
⎠
⎞
⎠
⎫⎬
⎭ (22)

for large N. It follows from (17)–(20) that

�N

({(
t ′1(x)√
Na1(r̃)

, . . . ,
t ′k(x)√
Nak(r̃)

, 0, . . .

)
: x ∈ B

})
= (1 + o(1))

exp{DN(r̃) + M(r̃)}
2πZN(φN/ρ)1/α

×
∫ π(φN/ρ)1/α

−π(φN/ρ)1/α

exp

{
−ib

N(α−1)/α

(φ/ρ)1/α
t + |t |αexp

{
−i

(α − 2)π

2
sign(t)

}
+ o(|t |)

}
dt

= (1 + o(1)) exp{M(r̃)}.
Thus,

EN

⎡
⎣∏

x∈B

k∏
j=1

eit ′j (x)a∗(x,j)(r̃)

⎤
⎦ = exp

⎧⎨
⎩−i

√
N
∑
x∈B

k∑
j=1

√
aj (r̃)t

′
j (x)

⎫⎬
⎭

×�N

({(
t ′1(x)√
Na1(r̃)

, . . . ,
t ′k(x)√
Nak(r̃)

, 0, . . .

)
: x ∈ B

})

= (1 + o(1)) exp

⎧⎨
⎩−1

2

∑
x∈B

k∑
j=1

(t ′j (x))2

⎫⎬
⎭

for ρ � ρc and large N. This is (ii).
By theorem 2 we see that, for any x, y ∈ B and j �= k, the numbers of the clusters a(x, j)

and a(y, k) are negative correlative in the sub-critical stage and independent in critical and
super-critical stages as N → ∞.

Let a sequence of positive number ε(N) satisfy ε(N) → 0 and N1/2ε(N)/ log N → ∞.
Note that Nε(N) = log N when ε(N) = log log N/ log N . Let ji = diN

αi , where 0 < di <

di+1 � log N and ε(N) � αi � αi+1 < 1/β for 1 � i � k.
By using the same method of proving (ii) of theorem 2, we can further obtain theorem 3.

Here we omit the proof.

Theorem 3. Suppose the three conditions in theorem 1 hold. Let a∗(x, ji) = [a(x, ji) −
N1−αiβaji

]/
√

N1−αiβaji
, where aji

= c(|B|ρ)−1d
−β

i , 1 � i � k. If ρ � ρc, then
{a∗(x, ji) : x ∈ B, 1 � i � k} converges to a mutually independent Gaussian vector
{Gi(x) : x ∈ B, 1 � i � k} as N → ∞ with E[Gj(x)] = 0 and E[Gj(x)Gl(y)] = δjl(xy).

Theorem 4. Suppose the three conditions in theorem 1 hold. Let a(x, jl), where jl = blN
1/β ,

where 0 < bl < bl+1 (1 � l � k − 1). If ρ � ρc, then {a(x, jl) : x ∈ B, 1 � l � k} converges
to the mutually independent Poisson vector {Pl(x) : x ∈ B, 1 � l � k} with the parameter
cl(ρ) = E[Pl(x)] = c

/(|B|ρb
β

l

)
for x ∈ B and 1 � l � k as N → ∞.
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Proof. Since 1/α > 1/β, we have

N1/β = o(N1/α), ei(jlθ) − 1 = o(N1/αθ)

for large N, where α = β−1. Note that h(jl)r̃
jl = (1+o(1))cN−1(bl)

−β . It follows from (17)–
(19) that

EN

[∏
x∈B

k∏
l=1

eitl (x)a(x,jl )

]
= �N({(t1(x), . . . , tk(x), 0, . . .) : x ∈ B})

= exp{DN(r̃)}
2πZN

∫ π

−π

exp

{
N

ρ
[F(r̃ eiθ ) − F(r̃)] − iNθ

+
N

|B|ρ
∑
x∈B

k∑
l=1

[eitjl (x) − 1]h(jl)r̃
jl ei(jlθ)

}
dθ

= (1 + o(1))
exp{DN(r̃)}

2πZN

∫ π

−π

exp

{
N

ρ
[F(r̃ eiθ ) − F(r̃)] − iNθ

+
∑
x∈B

k∑
l=1

cl(ρ)[eitjl (x) − 1] + o(N1/αθ)

}
dθ

= (1 + o(1)) exp

{∑
x∈B

k∑
l=1

cl(ρ)[eitjl (x) − 1]

}

for large N. Thus, the theorem is proved. �

Remark 2. It follows from theorems 2–4 that {a(x, jl) : x ∈ B, 1 � l � k} converges to
a Gaussian sequence for jl = O(N1/δ), δ > β, and a Poisson sequence for jl = O(N1/β)

in the critical and super-critical stages. The clusters with size jl = O(N1/δ), δ > β, or
jl = O(N1/δ), 1 � δ � β, may be respectively called as small or large clusters.

Let SN(x) = ∑k
l=1 a(x, jl) and SN(x; b1, b2) = ∑k2

l=k1
a(x, l), where jl = clN

ν, 0 <

cl < cl+1, k1 = aNν − b1N
βν−1, k2 = aNν + b2N

βν−1, 1/β < ν < 1/(β − 1) and a, b1, b2

are three positive constants. Then we have the following results.

Theorem 5. Suppose the three conditions in theorem 1 hold. If ρ � ρc, then

(i) The probability that SN(x) = 0 for each x ∈ B converges to 1, that is, µN(SN(x) =
0) → 1 as N → +∞;

(ii) {SN(x; b1, b2) : x ∈ B} converges to a mutually independent Poisson vector {P(x) :
x ∈ B} with the parameter E[P(x)] = Iρ = c[b2 + b1](|B|ρa(β+1))−1 for each x ∈ B as
N → +∞.

Proof. (i). Let �N({t (x), x ∈ B}) be the characteristic function of {SN(x), x ∈ B}. Note that
βν > 1, h(jl)r̃

jl = (1 + o(1))cN−βν(cl)
−β and

exp{i(jl)θ} − 1 = exp

{
i

(
jl

N1/(β−1)
N1/(β−1)θ

)}
− 1 = o(N1/αθ)

for large N, where α = β − 1. It follows from (17)–(19) that

�N({t (x), x ∈ B}) = exp{DN(r̃)}
2πZN

∫ π

−π

exp

{
N

ρ
[F(r̃ eiθ ) − F(r̃)] − iNθ
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+
N

|B|ρ
∑
x∈B

[eit (x) − 1]h(jl)r̃
j

l ei(jlθ)

}
dθ,

= (1 + o(1)) exp

{
N−(βν−1)

∑
x∈B

[eit (x) − 1]
k∑

l=1

c

|B|ρ(cl)β

}
→ 1

as N → +∞.
(ii) Let �̃N({t (x), x ∈ B}) be the characteristic function of {SN(x; b1, b2), x ∈ B}.

As (i) we have

�̃N({t (x), x ∈ B}) = exp{DN(r̃)}
2πZN

∫ π

−π

exp

{
N

ρ
[F(r̃ eiθ ) − F(r̃)] − iNθ

+
N

ρ|B|
∑
x∈B

[eit (x) − 1]
k2∑

k=k1

h(k)r̃k ei(kθ)

}
dθ,

= (1 + o(1)) exp

{
c

ρ|B|N
1−ν(β−1)

∑
x∈B

[eit (x) − 1]
∫ a+b2N

ν(β−1)−1

a−b1Nν(β−1)−1

du

uβ

}

→ exp

{∑
x∈B

Iρ[eit (x) − 1]

}

as N → +∞. This completes the proof. �

Theorem 5 shows that though the probability of occurrence of clusters with sizes
jl = clN

ν, 1 � l � k, is zero, the number of clusters with sizes in the large interval
[aNν − b1N

βν−1, aNν + b2N
βν−1] is subject to the Poisson distribution as N → ∞.
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